Search results for "Radial Basis Function"

showing 10 items of 61 documents

Online fitted policy iteration based on extreme learning machines

2016

Reinforcement learning (RL) is a learning paradigm that can be useful in a wide variety of real-world applications. However, its applicability to complex problems remains problematic due to different causes. Particularly important among these are the high quantity of data required by the agent to learn useful policies and the poor scalability to high-dimensional problems due to the use of local approximators. This paper presents a novel RL algorithm, called online fitted policy iteration (OFPI), that steps forward in both directions. OFPI is based on a semi-batch scheme that increases the convergence speed by reusing data and enables the use of global approximators by reformulating the valu…

0209 industrial biotechnologyInformation Systems and ManagementRadial basis function networkArtificial neural networkComputer sciencebusiness.industryStability (learning theory)02 engineering and technologyMachine learningcomputer.software_genreManagement Information Systems020901 industrial engineering & automationArtificial IntelligenceBellman equation0202 electrical engineering electronic engineering information engineeringBenchmark (computing)Reinforcement learning020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerSoftwareExtreme learning machineKnowledge-Based Systems
researchProduct

Neural Networks as Soft Sensors: a Comparison in a Real World Application.

2006

Physical atmosphere parameters, as temperature or humidity, can be indirectly estimated on the surface of a monument by means of soft sensors based on neural networks, if an ambient air monitoring station works in the neighborhood of the monument itself. Since the soft sensors work as virtual instruments, the accuracy of such measurements has to be analyzed and validated from statistical and metrological points of view. The paper compares different typologies of neural networks, which can be used as soft sensors in a complex real world application: a non invasive monitoring of the conservation state of old monuments. In this context, several designed connessionistic systems, based on radial…

Artificial neural networkComputer scienceEstimation theoryEstimatorHumidityContext (language use)computer.software_genreSoft sensorDomain (software engineering)Support vector machineRadial basis functionData miningcomputerSimulationThe 2006 IEEE International Joint Conference on Neural Network Proceedings
researchProduct

Semi-Supervised Support Vector Biophysical Parameter Estimation

2008

Two kernel-based methods for semi-supervised regression are presented. The methods rely on building a graph or hypergraph Laplacian with both the labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). The semi-supervised SVR methods are sucessfully tested in LAI estimation and ocean chlorophyll concentration prediction from remotely sensed images.

Artificial neural networkbusiness.industryComputer scienceEstimation theoryPattern recognitionRegression analysisSupport vector machineStatistics::Machine LearningKernel (linear algebra)Kernel methodVariable kernel density estimationPolynomial kernelRadial basis function kernelArtificial intelligencebusinessLaplace operatorIGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Regularized RBF Networks for Hyperspectral Data Classification

2004

In this paper, we analyze several regularized types of Radial Basis Function (RBF) Networks for crop classification using hyperspectral images. We compare the regularized RBF neural network with Support Vector Machines (SVM) using the RBF kernel, and AdaBoost Regularized (ABR) algorithm using RBF bases, in terms of accuracy and robustness. Several scenarios of increasing input space dimensionality are tested for six images containing six crop classes. Also, regularization, sparseness, and knowledge extraction are paid attention.

Artificial neural networkbusiness.industryComputer scienceMathematicsofComputing_NUMERICALANALYSISComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHyperspectral imagingPattern recognitionSupport vector machineComputingMethodologies_PATTERNRECOGNITIONComputer Science::Computational Engineering Finance and ScienceRobustness (computer science)Computer Science::Computer Vision and Pattern RecognitionRadial basis function kernelRadial basis functionArtificial intelligenceAdaBoostbusinessCurse of dimensionality
researchProduct

Classification of Satellite Images with Regularized AdaBoosting of RBF Neural Networks

2008

Artificial neural networkbusiness.industryPattern recognitionMachine learningcomputer.software_genreLinear discriminant analysisAdaboost algorithmSupport vector machineGeographySatelliteRadial basis functionArtificial intelligenceAdaBoostbusinesscomputer
researchProduct

A Generalised RBF Finite Difference Approach to Solve Nonlinear Heat Conduction Problems on Unstructured Datasets

2011

Radial Basis Functions have traditionally been used to provide a continuous interpolation of scattered data sets. However, this interpolation also allows for the reconstruction of partial derivatives throughout the solution field, which can then be used to drive the solution of a partial differential equation. Since the interpolation takes place on a scattered dataset with no local connectivity, the solution is essentially meshless. RBF-based methods have been successfully used to solve a wide variety of PDEs in this fashion. Such full-domain RBF methods are highly flexible and can exhibit spectral convergence rates Madych & Nelson (1990). However, in their traditional implementation the fu…

CollocationPartial differential equationMeshless freezing nonlinear heat conduction phase change radial basis functionLinear systemMathematical analysisFinite differenceApplied mathematicsBasis functionDomain decomposition methodsRadial basis functionInterpolationMathematics
researchProduct

A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential …

2002

Abstract In this article, we present a thorough numerical comparison between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of boundary value problems for partial differential equations. A series of test examples was solved with these two schemes, different problems with different type of governing equations, and boundary conditions. Particular emphasis was paid to the ability of these schemes to solve the steady-state convection-diffusion equation at high values of the Peclet number. From the examples tested in this work, it was observed that the system of algebraic equations obtained with the symmetric method was in general simpler to solve …

CollocationPartial differential equationSeries (mathematics)Numerical solutionMathematical analysisPartial differential equationAlgebraic equationComputational MathematicsComputational Theory and MathematicsModeling and SimulationCollocation methodModelling and SimulationRadial basis functionBoundary value problemMesh free techniqueMathematicsNumerical partial differential equationsComputers & Mathematics with Applications
researchProduct

BELM: Bayesian Extreme Learning Machine

2011

The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap…

Computer Networks and CommunicationsComputer scienceComputer Science::Neural and Evolutionary ComputationBayesian probabilityOverfittingMachine learningcomputer.software_genrePattern Recognition AutomatedReduction (complexity)Artificial IntelligenceComputer SimulationRadial basis functionExtreme learning machineArtificial neural networkbusiness.industryEstimation theoryBayes TheoremGeneral MedicineComputer Science ApplicationsMultilayer perceptronNeural Networks ComputerArtificial intelligencebusinesscomputerAlgorithmsSoftwareIEEE Transactions on Neural Networks
researchProduct

Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contamin…

2011

The capacity of multi-layer perceptron artificial neural networks (MLP-ANN) and radial-basis function networks (RBFNs) to predict deoxynivalenol (DON) accumulation in barley seeds contaminated with Fusarium culmorum under different conditions has been assessed. Temperature (20-28 °C), water activity (0.94-0.98), inoculum size (7-15 mm diameter), and time were the inputs while DON concentration was the output. The dataset was used to train, validate and test many ANNs. Minimizing the mean-square error (MSE) was used to choose the optimal network. Single-layer perceptrons with low number of hidden nodes proved better than double-layer perceptrons, but the performance depended on the training …

Computer Science::Neural and Evolutionary ComputationMachine learningcomputer.software_genreTECNOLOGIA ELECTRONICAB TrichothecenesFusarium culmorumRadial basis functionFusarium culmorumMathematicsbiologyArtificial neural networkPredictive microbiologybusiness.industryHordeumFunction (mathematics)biology.organism_classificationPerceptronMicrobial growthPredictive microbiologyArtificial intelligencebusinessBiological systemcomputerLeuconostoc-mesenteroidesFood ScienceBiotechnologyMultilayer perceptron neural network
researchProduct

Optimizing Kernel Ridge Regression for Remote Sensing Problems

2018

Kernel methods have been very successful in remote sensing problems because of their ability to deal with high dimensional non-linear data. However, they are computationally expensive to train when a large amount of samples are used. In this context, while the amount of available remote sensing data has constantly increased, the size of training sets in kernel methods is usually restricted to few thousand samples. In this work, we modified the kernel ridge regression (KRR) training procedure to deal with large scale datasets. In addition, the basis functions in the reproducing kernel Hilbert space are defined as parameters to be also optimized during the training process. This extends the n…

Computer science0211 other engineering and technologiesHyperspectral imagingContext (language use)Basis function02 engineering and technology01 natural sciencesData set010104 statistics & probabilityKernel (linear algebra)Kernel methodKernel (statistics)Radial basis function kernel0101 mathematics021101 geological & geomatics engineeringReproducing kernel Hilbert spaceRemote sensingIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct